REGULATION OF THE PROLIFERATIVE ACTIVITY AND CHEMORESISTANCE IN TUMOR CELLS BY SODIUM ASCORBATE
https://doi.org/10.29235/1561-8323-2018-62-1-93-100
Abstract
The effect of ascorbate in physiological concentrations on the proliferative activity and chemoresistance in human larynx carcinoma HEp-2 cells was studied. Ascorbate in a concentration of 60 μM was found to increase the cancer cells proliferation rate 1.5 times. Ascorbate changes the functional state of the cancer cells, thereby increasing their resistance to doxorubicin and thymoquinone. It was shown that apocynin (NADPH oxidase inhibitor) blocks the stimulating effect of the antioxidant. The results obtained suggest that reactive oxygen species produced by NADPH oxidase participate in the mechanism of cell adaptive response induced by ascorbate.
About the Authors
Grigory G. MartinovichBelarus
D. Sc. (Biology), Assistant Professor, Head of the Department
4, Nezavisimosti Ave., 220030, Minsk
Irina V. Martinovich
Belarus
Senior researcher
4, Nezavisimosti Ave., 220030, Minsk
Aleksandra V. Vcherashniaya
Belarus
Junior researcher
4, Nezavisimosti Ave., 220030, Minsk
Nikolai K. Zenkov
Russian Federation
D. Sc. (Biology), Leading researcher
2, Academician Timakov Str., 630117, Novosibirsk
Elena B. Menshchikova
Russian Federation
D. Sc. (Medicine), Assistant Professor, Chief researcher
2, Academician Timakov Str., 630117, Novosibirsk
Sergei N. Cherenkevich
Belarus
Academician, D. Sc. (Biology), Professor
4, Nezavisimosti Ave., 220030, Minsk
References
1. Du J., Cullen J. J., Buettner G. R. Ascorbic acid: Chemistry, biology and the treatment of cancer. Biochimica et Biophysica Acta (BBA) – Reviews on Cancer, 2012, vol. 1826, no. 2, pp. 443–457. doi.org/10.1016/j.bbcan.2012.06.003
2. Cameron E., Pauling L. Supplemental ascorbate in the supportive treatment of cancer: prolongation of survival times in terminal human cancer. Proceedings of the National Academy of Sciences, 1976, vol. 73, no. 10, pp. 3685–3689. doi. org/10.1073/pnas.73.10.3685
3. Moertel C. G., Fleming T. R., Creagan E. T., Rubin J., O’Connell M. J., Ames M. M. High-dose vitamin C versus placebo in the treatment of patients with advanced cancer who have had no prior chemotherapy – A randomized double-blind comparison. New England Journal of Medicine, 1985, vol. 312, no. 3, pp. 137–141. doi.org/10.1056/nejm198501173120301
4. Padayatty S. J., Sun H., Wang Y. H., Riordan H. D., Hewitt S. M., Katz A., Wesley R. A., Levine M. Vitamin C pharmacokinetics: implications for oral and intravenous use. Annals of Internal Medicine, 2004, vol. 140, no. 7, pp. 533–537. doi. org/10.7326/0003-4819-140-7-200404060-00010
5. Chen Q., Espey M., Sun A., Pooput C., Kirk K., Krishna M., Khosh D., Drisko J., Levine M. Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. Proceedings of the National Academy of Sciences, 2008, vol. 105, no. 32, pp. 11105–11109. doi.org/10.1073/pnas.0804226105
6. Pollard H. B., Levine M. A., Eidelman O., Pollard M. Pharmacological ascorbic acid suppresses syngeneic tumor growth and metastases in hormone-refractory prostate cancer. In Vivo, 2010, vol. 24, pp. 249–255.
7. Suh J., Zhu B., Frei B. Ascorbate does not act as a pro-oxidant towards lipids and proteins in human plasma exposed to redox-active transition metal ions and hydrogen peroxide. Free Radical Biology and Medicine, 2003, vol. 34, no. 10, pp. 1306–1314. doi.org/10.1016/s0891-5849(03)00147-3
8. Cherenkevich S. N., Martinovich G. G., Martinovich I. V., Gorudko I. V., Shamova E. V. Redox regulation of cellular activity: concepts and mechanisms. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya biyalagichnych navuk = Proceedings of the National Academy of Sciences of Belarus. Biological series, 2013, no. 1, pp. 92–108 (in Russian).
9. Martinovich G. G., Martinovich I. V., Cherenkevich S. N. Effects of ascorbic acid on calcium signaling in tumor cells. Bulletin of Experimental Biology and Medicine, 2009, vol. 147, no. 4, pp. 469–472. doi.org/10.1007/s10517-009-0555-6
10. Martinovich G. G., Golubeva E. N., Martinovich I. V., Cherenkevich S. N. Redox regulation of calcium signaling in cancer cells by ascorbic acid involving the mitochondrial electron transport chain. Journal of Biophysics, 2012, vol. 2012, art. 921653. doi.org/10.1155/2012/921653
11. Martinovich G. G., Martinovich I. V., Cherenkevich S. N. Redox regulation of cellular processes: a biophysical model and experiment. Biophysics, 2011, vol. 56, no. 3, pp. 444–451. doi.org/10.1134/s0006350911030171
12. Martinovich G. G., Martinovich I. V., Zenkov N. K., Menshchikova E. B., Kandalintseva N. V., Cherenkevich S. N. Phenolic antioxidant TS-13 regulating ARE-driven genes induces tumor cell death by a mitochondria-dependent pathway. Biophysics, 2015, vol. 60, no. 1, pp. 94–100. doi.org/10.1134/s0006350915010194
13. Martinovich G. G., Martinovich I. V., Vcherashniaya A. V., Shadyro O. I., Cherenkevich S. N. Thymoquinone, a biologically active component of Nigella sativa, induces mitochondrial production of reactive oxygen species and programmed death of tumor cells. Biophysics, 2016, vol. 61, no. 6, pp. 963–970. doi.org/10.1134/s0006350916060154
14. Zenkov N. K., Kozhin P. M., Chechushkov A. V., Martinovich G. G., Kandalintseva N. V., Menshchikova E. B. Mazes of Nrf2 Regulation. Biochemistry (Moscow), 2017, vol. 82, no. 5, pp. 556–564. doi.org/10.1134/s0006297917050030
15. Dinkova-Kostova A. T., Fahey J. W., Talalay P. Chemical structures of inducers of nicotinamide quinine oxidoreductase 1 (NQO1). Methods in Enzymology, 2004, vol. 382, pp. 423–448. doi.org/10.1016/s0076-6879(04)82023-8
16. Kim S. R., Ha Y. M., Kim Y. M., Park E. J., Kim J. W., Park S. W., Kim H. J., Chung H. T., Chang K. C. Ascorbic acid reduces HMGB1 secretion in lipopolysaccharide-activated RAW 264.7 cells and improves survival rate in septic mice by activation of Nrf2/HO-1 signals. Biochemical Pharmacology, 2015, vol. 95, no. 4, pp. 279–289. doi.org/10.1016/j.bcp.2015.04.007
17. Abid M., Kachra Z., Spokes K. C., Aird W. C. NADPH oxidase activity is required for endothelial cell proliferation and migration. FEBS Letters, 2000, vol. 486, no. 3, pp. 252–256. doi.org/10.1016/s0014-5793(00)02305-x