Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

REGULATION OF THE PROLIFERATIVE ACTIVITY AND CHEMORESISTANCE IN TUMOR CELLS BY SODIUM ASCORBATE

https://doi.org/10.29235/1561-8323-2018-62-1-93-100

Abstract

The effect of ascorbate in physiological concentrations on the proliferative activity and chemoresistance in human larynx carcinoma HEp-2 cells was studied. Ascorbate in a concentration of 60 μM was found to increase the cancer cells proliferation rate 1.5 times. Ascorbate changes the functional state of the cancer cells, thereby increasing their resistance to doxorubicin and thymoquinone. It was shown that apocynin (NADPH oxidase inhibitor) blocks the stimulating effect of the antioxidant. The results obtained suggest that reactive oxygen species produced by NADPH oxidase participate in the mechanism of cell adaptive response induced by ascorbate. 

About the Authors

Grigory G. Martinovich
Belarusian State University
Belarus

D. Sc. (Biology), Assistant Professor, Head of the Department

4, Nezavisimosti Ave., 220030, Minsk



Irina V. Martinovich
Belarusian State University
Belarus

Senior researcher

4, Nezavisimosti Ave., 220030, Minsk



Aleksandra V. Vcherashniaya
Belarusian State University
Belarus

Junior researcher

4, Nezavisimosti Ave., 220030, Minsk



Nikolai K. Zenkov
Research Institute of Experimental and Clinical Medicine
Russian Federation

D. Sc. (Biology), Leading researcher

2, Academician Timakov Str., 630117, Novosibirsk



Elena B. Menshchikova
Research Institute of Experimental and Clinical Medicine
Russian Federation

D. Sc. (Medicine), Assistant Professor, Chief researcher

2, Academician Timakov Str., 630117, Novosibirsk



Sergei N. Cherenkevich
Belarusian State University
Belarus

Academician, D. Sc. (Biology), Professor

4, Nezavisimosti Ave., 220030, Minsk



References

1. Du J., Cullen J. J., Buettner G. R. Ascorbic acid: Chemistry, biology and the treatment of cancer. Biochimica et Biophysica Acta (BBA) – Reviews on Cancer, 2012, vol. 1826, no. 2, pp. 443–457. doi.org/10.1016/j.bbcan.2012.06.003

2. Cameron E., Pauling L. Supplemental ascorbate in the supportive treatment of cancer: prolongation of survival times in terminal human cancer. Proceedings of the National Academy of Sciences, 1976, vol. 73, no. 10, pp. 3685–3689. doi. org/10.1073/pnas.73.10.3685

3. Moertel C. G., Fleming T. R., Creagan E. T., Rubin J., O’Connell M. J., Ames M. M. High-dose vitamin C versus placebo in the treatment of patients with advanced cancer who have had no prior chemotherapy – A randomized double-blind comparison. New England Journal of Medicine, 1985, vol. 312, no. 3, pp. 137–141. doi.org/10.1056/nejm198501173120301

4. Padayatty S. J., Sun H., Wang Y. H., Riordan H. D., Hewitt S. M., Katz A., Wesley R. A., Levine M. Vitamin C pharmacokinetics: implications for oral and intravenous use. Annals of Internal Medicine, 2004, vol. 140, no. 7, pp. 533–537. doi. org/10.7326/0003-4819-140-7-200404060-00010

5. Chen Q., Espey M., Sun A., Pooput C., Kirk K., Krishna M., Khosh D., Drisko J., Levine M. Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. Proceedings of the National Academy of Sciences, 2008, vol. 105, no. 32, pp. 11105–11109. doi.org/10.1073/pnas.0804226105

6. Pollard H. B., Levine M. A., Eidelman O., Pollard M. Pharmacological ascorbic acid suppresses syngeneic tumor growth and metastases in hormone-refractory prostate cancer. In Vivo, 2010, vol. 24, pp. 249–255.

7. Suh J., Zhu B., Frei B. Ascorbate does not act as a pro-oxidant towards lipids and proteins in human plasma exposed to redox-active transition metal ions and hydrogen peroxide. Free Radical Biology and Medicine, 2003, vol. 34, no. 10, pp. 1306–1314. doi.org/10.1016/s0891-5849(03)00147-3

8. Cherenkevich S. N., Martinovich G. G., Martinovich I. V., Gorudko I. V., Shamova E. V. Redox regulation of cellular activity: concepts and mechanisms. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya biyalagichnych navuk = Proceedings of the National Academy of Sciences of Belarus. Biological series, 2013, no. 1, pp. 92–108 (in Russian).

9. Martinovich G. G., Martinovich I. V., Cherenkevich S. N. Effects of ascorbic acid on calcium signaling in tumor cells. Bulletin of Experimental Biology and Medicine, 2009, vol. 147, no. 4, pp. 469–472. doi.org/10.1007/s10517-009-0555-6

10. Martinovich G. G., Golubeva E. N., Martinovich I. V., Cherenkevich S. N. Redox regulation of calcium signaling in cancer cells by ascorbic acid involving the mitochondrial electron transport chain. Journal of Biophysics, 2012, vol. 2012, art. 921653. doi.org/10.1155/2012/921653

11. Martinovich G. G., Martinovich I. V., Cherenkevich S. N. Redox regulation of cellular processes: a biophysical model and experiment. Biophysics, 2011, vol. 56, no. 3, pp. 444–451. doi.org/10.1134/s0006350911030171

12. Martinovich G. G., Martinovich I. V., Zenkov N. K., Menshchikova E. B., Kandalintseva N. V., Cherenkevich S. N. Phenolic antioxidant TS-13 regulating ARE-driven genes induces tumor cell death by a mitochondria-dependent pathway. Biophysics, 2015, vol. 60, no. 1, pp. 94–100. doi.org/10.1134/s0006350915010194

13. Martinovich G. G., Martinovich I. V., Vcherashniaya A. V., Shadyro O. I., Cherenkevich S. N. Thymoquinone, a biologically active component of Nigella sativa, induces mitochondrial production of reactive oxygen species and programmed death of tumor cells. Biophysics, 2016, vol. 61, no. 6, pp. 963–970. doi.org/10.1134/s0006350916060154

14. Zenkov N. K., Kozhin P. M., Chechushkov A. V., Martinovich G. G., Kandalintseva N. V., Menshchikova E. B. Mazes of Nrf2 Regulation. Biochemistry (Moscow), 2017, vol. 82, no. 5, pp. 556–564. doi.org/10.1134/s0006297917050030

15. Dinkova-Kostova A. T., Fahey J. W., Talalay P. Chemical structures of inducers of nicotinamide quinine oxidoreductase 1 (NQO1). Methods in Enzymology, 2004, vol. 382, pp. 423–448. doi.org/10.1016/s0076-6879(04)82023-8

16. Kim S. R., Ha Y. M., Kim Y. M., Park E. J., Kim J. W., Park S. W., Kim H. J., Chung H. T., Chang K. C. Ascorbic acid reduces HMGB1 secretion in lipopolysaccharide-activated RAW 264.7 cells and improves survival rate in septic mice by activation of Nrf2/HO-1 signals. Biochemical Pharmacology, 2015, vol. 95, no. 4, pp. 279–289. doi.org/10.1016/j.bcp.2015.04.007

17. Abid M., Kachra Z., Spokes K. C., Aird W. C. NADPH oxidase activity is required for endothelial cell proliferation and migration. FEBS Letters, 2000, vol. 486, no. 3, pp. 252–256. doi.org/10.1016/s0014-5793(00)02305-x


Review

Views: 1145


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)