FROBENIUS’ SOLUTIONS AND THE ANALYSIS OF THE TUNNELING EFFECT FOR SPIN 1/2 PARTICLE THROUGH THE SCHWARZSCHILD BARRIER
https://doi.org/10.29235/1561-8323-2018-62-3-274-280
Abstract
About the Authors
E. M. OvsiyukBelarus
Ovsiyuk Elena Mikhailovna – Ph. D. (Physics and Mathematics), Assistant Professor.
28, Studencheskaya Str., 247760, Mozyr.
Ya. A. Voynova
Belarus
Voynova Yanina Aleksandrovna – Physics teacher.
29, Bogdanovich Str., 220029, Minsk.
V. M. Red’kov
Belarus
Red’kov Viktor Mikhailovich – D. Sc. (Physics and Mathematics), Chief Researcher.
68-2, Nezavisimosti Ave., 220072, Minsk.
References
1. Regge T., Wheeler J. A. Stability of a Schwarzschild Singularity. Physical Review, 1957, vol. 108, no. 4, pp. 1063–1069. https://doi.org/10.1103/physrev.108.1063
2. Schwarzschild K. Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften. Sitzung vom 3. Februar 1916. pp. 189–196 (in German).
3. Chandrasekhar S. The Mathematical Theory of Black Holes. Oxford, Oxford University Press, 1983. 646 p.
4. Smoller J., Xie Chunjing. Asymptotic Behavior of Massless Dirac Waves in Schwarzschild Geometry. Annales Henri Poincare, 2012, vol. 13, no. 4, pp. 943–989. https://doi.org/10.1007/s00023-011-0145-9
5. Ovsiyuk E. M., Veko O. V., Rusak Yu. A., Chichurin A. V., Red’kov V. M. To Analysis of the Dirac and Majorana Particle Solutions in Schwarzschild Field. Nonlinear Phenomena in Complex System, 2017, vol. 20, no 1, pp. 56–72.
6. Red’kov V. M. Field particles in Riemannian space and the Lorentz group. Minsk, Belaruskaya Navuka Publ., 2009. 496 p. (in Russian).
7. Red’kov V. M. Tetrad formalism, spherical symmetry and Schrödinger basis. Minsk, Belaruskaya Navuka Publ., 2011. 496 p. (in Russian).
8. Ronveaux A. Heun’s Differential Equations. Oxford, Oxford University Press, 1995. 354 p.
9. Slavyanov S. Yu., Lay W. Special functions. A unified theory based on singularities. Oxford, Oxford University Press, 2000. 312 p.