SMOOTHNESS PROPERTIES OF THE URYSON INTEGRAL OPERATORS AND THE NEWTON–KANTOROVICH METHOD
Abstract
The article deals with the analysis of “weakened smoothness properties” for Uryson integral operators in the Lebesgue spaces Lp(1≤ p < ∞). It is shown that the formal derivative of the Uryson integral operator generated by a smooth (and even analytical) kernel can be considered as a generalized derivative; namely, for this formal derivative, a variant of the classical Newton–Leibnitz formula turns to be held. The smoothness conditions for such formal derivatives are presented. All theses data allow obtaining some results on the convergence of the Newton–Kantorovich method for Uryson integral equations.
About the Authors
N. A. EVKHUTARussian Federation
O. N. EVKHUTA
Russian Federation
P. P. ZABREIKO
Belarus
References
1. Appell J., Zabrejko P. P. Nonlinear Superposition Operators (Cambridge Texts in Mathematics, N 95). Cambridge University Press, 1990. – 320 p.
2. Appell J., De Pascale E., Zabrejko P. P. // Numerical Functional Analysis and Optimization. 1991. Vol. 12, N 3–4. P. 271–284.
3. Евхута Н. А., Евхута О. Н., Забрейко П. П. // Докл. НАН Беларуси. 2013. Т. 57, № 5. С. 5–10.
4. Красносельский М. А., Забрейко П. П., Пустыльник Е. И., Соболевский П. Е. Интегральные операторы в пространствах суммируемых функций. М.: Наука, 1966. – 500 с.
5. Забрейко П. П., Кошелев А. И., Красносельский М. А. и др. Интегральные уравнения. М.: Наука, 1968. – 448 с.