Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

SMOOTHNESS PROPERTIES OF THE URYSON INTEGRAL OPERATORS AND THE NEWTON–KANTOROVICH METHOD

Abstract

The article deals with the analysis of “weakened smoothness properties” for Uryson integral operators in the Lebesgue spaces Lp(1≤ p < ∞). It is shown that the formal derivative of the Uryson integral operator generated by a smooth (and even analytical) kernel can be considered as a generalized derivative; namely, for this formal derivative, a variant of the classical Newton–Leibnitz formula turns to be held. The smoothness conditions for such formal derivatives are presented. All theses data allow obtaining some results on the convergence of the Newton–Kantorovich method for Uryson integral equations.

About the Authors

N. A. EVKHUTA
Южно-Российский технический университет, Новочеркасск
Russian Federation


O. N. EVKHUTA
Южно-Российский технический университет, Новочеркасск
Russian Federation


P. P. ZABREIKO
Белорусский государственный университет, Минск
Belarus


References

1. Appell J., Zabrejko P. P. Nonlinear Superposition Operators (Cambridge Texts in Mathematics, N 95). Cambridge University Press, 1990. – 320 p.

2. Appell J., De Pascale E., Zabrejko P. P. // Numerical Functional Analysis and Optimization. 1991. Vol. 12, N 3–4. P. 271–284.

3. Евхута Н. А., Евхута О. Н., Забрейко П. П. // Докл. НАН Беларуси. 2013. Т. 57, № 5. С. 5–10.

4. Красносельский М. А., Забрейко П. П., Пустыльник Е. И., Соболевский П. Е. Интегральные операторы в пространствах суммируемых функций. М.: Наука, 1966. – 500 с.

5. Забрейко П. П., Кошелев А. И., Красносельский М. А. и др. Интегральные уравнения. М.: Наука, 1968. – 448 с.


Review

Views: 730


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)